lunes, 21 de marzo de 2011

Transistor MOSFET IRFP251 ó IRP250

MOSFET son las siglas de Metal Oxide Semiconductor Field Effect Transistor. Consiste en un transistor de efecto de campo basado en la estructura MOS. Es el transistor más utilizado en la industria microelectrónica. Prácticamente la totalidad de los circuitos integrados de uso comercial están basados en transistores MOSFET.



Funcionamiento

Curvas característica y de salida de un transistor MOSFET de acumulación canal n.
Curvas característica y de salida de un transistor MOSFET de deplexión canal n.
Un transistor MOSFET consiste en un sustrato de material semiconductor dopado en el que, mediante técnicas de difusión de dopantes, se crean dos islas de tipo opuesto separadas por un área sobre la cual se hace crecer una capa de dieléctrico culminada por una capa de conductor. Los transistores MOSFET se dividen en dos tipos fundamentales dependiendo de cómo se haya realizado el dopaje:
  • Tipo nMOS: Sustrato de tipo p y difusiones de tipo n.
  • Tipo pMOS: Sustrato de tipo n y difusiones de tipo p.
Las áreas de difusión se denominan fuente(source) y drenador(drain), y el conductor entre ellos es la puerta(gate).
El transistor MOSFET tiene tres estados de funcionamiento:

Estado de corte

Cuando la tensión de la puerta es idéntica a la del sustrato, el MOSFET está en estado de no conducción: ninguna corriente fluye entre fuente y drenador. También se llama MOSFET a los aislados por juntura de dos componentes.


Conducción lineal

Al polarizarse la puerta con una tensión negativa (pMOS) o positiva (nMOS), se crea una región de deplexión en la región que separa la fuente y el drenador. Si esta tensión crece lo suficiente, aparecerán portadores minoritarios (electrones en pMOS, huecos en nMOS) en la región de deplexión que darán lugar a un canal de conducción. El transistor pasa entonces a estado de conducción, de modo que una diferencia de potencial entre fuente y drenador dará lugar a una corriente. El transistor se comporta como una resistencia controlada por la tensión de puerta.


Saturación

Cuando la tensión entre drenador y fuente supera cierto límite, el canal de conducción bajo la puerta sufre un estrangulamiento en las cercanías del drenador y desaparece. La corriente entre fuente y drenador no se interrumpe, ya que es debido al campo eléctrico entre ambos, pero se hace independiente de la diferencia de potencial entre ambos terminales.




         

Circuito integrado temporizador NE555.

El circuito integrado 555 es de bajo costo y de grandes prestaciones. Inicialmente fue desarrollado por la firma Signetics En la actualidad es construido por muchos otros fabricantes. Entre sus aplicaciones principales cabe destacar las de multivibrador astable (dos estados metaestables) y monoestable (un estado estable y otro metaestable), detector de impulsos, etcétera.



Descripción de las terminales del Temporizador 555

Pines del 555.
  • GND (normalmente la 1): es el polo negativo de la alimentación, generalmente tierra.
  • Disparo (normalmente la 2): Es en esta patilla, donde se establece el inicio del tiempo de retardo, si el 555 es configurado como monostable. Este proceso de disparo ocurre cuando este pin va por debajo del nivel de 1/3 del voltaje de alimentación. Este pulso debe ser de corta duración, pues si se mantiene bajo por mucho tiempo la salida se quedará en alto hasta que la entrada de disparo pase a alto otra vez.
  • Salida (normalmente la 3): Aquí veremos el resultado de la operación del temporizador, ya sea que esté conectado como monostable, astable u otro. Cuando la salida es alta, el voltaje será el voltaje de alimentación (Vcc) menos 1.7 Voltios. Esta salida se puede obligar a estar en casi 0 voltios con la ayuda de la patilla de reset (normalmente la 4).
  • Reset (normalmente la 4): Si se pone a un nivel por debajo de 0.7 Voltios, pone la patilla de salida a nivel bajo. Si por algún motivo esta patilla no se utiliza hay que conectarla a Vcc para evitar que el 555 se "resetee".
  • Control de voltaje (normalmente la 5): Cuando el temporizador se utiliza en el modo de controlador de voltaje, el voltaje en esta patilla puede variar casi desde Vcc (en la práctica como Vcc -1 voltio) hasta casi 0 V (aprox. 2 Voltios). Así es posible modificar los tiempos en que la salida está en alto o en bajo independiente del diseño (establecido por las resistencias y condensadores conectados externamente al 555). El voltaje aplicado a la patilla de control de voltaje puede variar entre un 45 y un 90 % de Vcc en la configuración monostable. Cuando se utiliza la configuración astable, el voltaje puede variar desde 1.7 voltios hasta Vcc. Modificando el voltaje en esta patilla en la configuración astable causará la frecuencia original del astable sea modulada en frecuencia (FM). Si esta patilla no se utiliza, se recomienda ponerle un condensador de 0.01μF para evitar las interferencias.
  • Umbral (normalmente la 6): Es una entrada a un comparador interno que tiene el 555 y se utiliza para poner la salida a nivel bajo.
  • Descarga (normalmente la 7): Utilizado para descargar con efectividad el condensador externo utilizado por el temporizador para su funcionamiento.
  • V+ (normalmente la 8): También llamado Vcc, alimentación, es el pin donde se conecta el voltaje de alimentación que va de 4.5 voltios hasta 18 voltios (máximo). Hay versiones militares de este integrado que llegan hasta 18 Voltios

    

Capacitores de cerámica.

Son capacitores pequeños muy utilizados en aparatos de radio y televisión se componen de un material aislante especial de sobre el que se fijan las placas de plata del capacitor. La componente completa se trata con un aislamiento especial para que resista el calor y la humedad. Estos capacitores tienen una corriente de fuga muy baja y se usan tanto en las redes de cd como de ca.


     

Potenciometro miniatura para circuito impreso.



Un potenciometro  es un resistor cuyo valor de resistencia es variable. De esta manera, indirectamente, se puede controlar la intensidad de corriente que fluye por un circuito si se conecta en paralelo, o la diferencia de potencial al conectarlo en serie.
Normalmente, los potenciómetros se utilizan en circuitos de poca corriente. Para circuitos de corrientes mayores, se utilizan los reostatos, que pueden disipar más potencia.

      Potentiometer.jpg    

Diodos de germanio tipo 1N4148


Un diodo es un elemento de dos terminales cuya característica tensión-corriente
no es lineal. Está formado por un cristal semiconductor dopado de tal manera que una
mitad es tipo "P" y la otra "N", constituyendo una unión PN. El terminal que se
corresponde con la parte P se llama ánodo y el que coincide con la N cátodo. Según el
campo de aplicación y su destino, los diodos semiconductores se subdividen en
rectificadores, de alta frecuencia, de impulsión, estabilizadores de regulación de tensión
(Zener), de efecto túnel, etc.
Las características de su funcionamiento están definidas por una curva
denominada curva característica del diodo rectificador. La curva característica tensióncorriente de un diodo real, se describe aproximadamente por (1). Donde I0 es la corriente inversa de saturación de la unión P-N, jt
 es el potencial térmico y V la tensión aplicada.

Resistencia eléctrica.


La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente.
Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.
Para una gran cantidad de materiales y condiciones, la resistencia eléctrica no depende de la corriente eléctrica que pasa a través de un objeto o de la tensión en los terminales de este. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Además, de acuerdo con la ley de Ohm la resistencia de un objeto puede definirse como la razón de la tensión y la corriente.                  
      

Capacitor 1000 microfaradios 25 V

¿ QUE ES UN CAPACITOR ?
Sin entrar en grandes detalles, un capacitor está formado de 2 placas una enfrente
de la otra. Las placas se cargan con cargas eléctricas. Una placa es positiva y la otra
negativa. Entre las 2 placas cargadas aparece un campo eléctrico. Sería algo así :
Podés ver capacitores adentro de las radios, en los estereos o en las plaquetas de
las computadoras. En la realidad los capacitores se parecen a esto:
En el capacitor en forma de lenteja, cada pata conecta a una de las placas que están
adentro de la lenteja. En el capacitor cilíndrico, las placas están enrolladas una
sobre la otra formando un tubito. Las placas son como un papel finito de aluminio .
Para que no se toquen las placas, se coloca un aislante entre ellas. ( Dieléctrico ).
Cada pata conecta a una de las placas.
¿ Para que sirve un capacitor ?
Sin hilar finito digamos que un capacitor sirve para almacenar carga. Un capacitor es
como una especie de recipiente con cargas adentro. Tiene carga en sus placas. Esa
carga está ahí guardada y no se va a ningún lado. Mientras el capacitor esté cargado,
la carga se conserva. Después uno puede usar esa carga para lo que uno necesite. Se
lo llama capacitor porque tiene capacidad para almacenar carga. A veces se usa
también el nombre " condensador ". ( Viejo )